الانتقال المتوسط - الضبابي تصفية


دليل العلماء والمهندسين لمعالجة الإشارات الرقمية من قبل ستيفن دبليو سميث، دكتوراه في الطب. الفصل 15: الفلاتر المتوسطة المتحركة أقارب المرشح المتوسط ​​المتحرك في عالم مثالي، يجب على مصممي التصفية أن يتعاملوا مع معلومات المجال الزمني أو نطاق التردد المشفر، ولكن ليس أبدا خليط من الاثنين في نفس الإشارة. لسوء الحظ، هناك بعض التطبيقات حيث كلا المجالين في وقت واحد مهم. فعلى سبيل المثال، تقع الإشارات التلفزيونية في هذه الفئة المقنعة. يتم ترميز معلومات الفيديو في المجال الزمني، وهذا هو، شكل الموجي يتوافق مع أنماط السطوع في الصورة. ومع ذلك، أثناء الإرسال يتم التعامل مع إشارة الفيديو وفقا لتكوين ترددها، مثل عرض النطاق الترددي الكلي، وكيفية إضافة موجات الموجة الحاملة للون الأمبير الصوتي، واستعادة أمبير القضاء على مكون دس، وما إلى ذلك. وكمثال آخر، التداخل الكهرومغناطيسي هو أفضل فهم في مجال التردد، حتى لو تم تشفير معلومات الإشارات في المجال الزمني. فعلى سبيل المثال، قد يتلوث جهاز رصد درجة الحرارة في تجربة علمية ب 60 هيرتز من خطوط الكهرباء، أو خز 30 من مصدر طاقة التبديل، أو خز 1320 من محطة إذاعة محلية آم. لدى أقارب المرشح المتوسط ​​المتحرك أداء نطاق تردد أفضل، ويمكن أن يكون مفيدا في تطبيقات النطاقات المختلطة هذه. تتضمن مرشحات المتوسط ​​المتحرك متعددة المرور تمرير إشارة الدخل من خلال مرشح متوسط ​​متحرك مرتين أو أكثر. ويبين الشكل 15-3a نواة الفلتر الإجمالية الناتجة عن مرور واحد أو اثنين أو أربعة. اثنين من بطاقات تعادل استخدام نواة مرشح الثلاثي (نواة مرشح مستطيلة حلها مع نفسها). بعد مرور أربعة أو أكثر، تبدو نواة الفلتر المكافئة مثل غاوس (تذكر نظرية الحد المركزي). كما هو مبين في (ب)، تمرير متعددة تنتج استجابة خطوة على شكل s، بالمقارنة مع خط مستقيم من تمريرة واحدة. وتعطى الاستجابات الترددية في (c) و (d) بالمعادلة. 15-2 مضروبا في حد ذاته لكل تمريرة. وهذا يعني أن كل انحراف في المجال الزمني يؤدي إلى مضاعفة أطياف التردد. ويوضح الشكل 15-4 استجابة التردد لأحد الأقارب الآخرين لمرشاح المتوسط ​​المتحرك. عندما يتم استخدام غاوس نقية كنواة مرشح، استجابة التردد هو أيضا غاوس، كما نوقش في الفصل 11. الغاوس مهم لأنه هو استجابة النبض للعديد من النظم الطبيعية والصناعية. على سبيل المثال، نبضة موجزة من الضوء الذي يدخل خط نقل الألياف البصرية طويلة سوف الخروج كنبض غاوس، وذلك بسبب مسارات مختلفة التي اتخذتها الفوتونات داخل الألياف. كما تستخدم نواة الفلتر غاوس على نطاق واسع في معالجة الصور نظرا لخصائصها الفريدة التي تسمح بتحويلات سريعة ثنائية الأبعاد (انظر الفصل 24). وتتوافق استجابة التردد الثانية في الشكل 15-4 مع استخدام نافذة بلكمان كنواة مرشح. (المصطلح نافذة ليس له معنى هنا هو ببساطة جزء من اسم مقبول من هذا المنحنى). الشكل الدقيق للنافذة بلكمان يرد في الفصل 16 (المقياس 16-2، الشكل 16-2) ومع ذلك، يبدو وكأنه غاوسيان. كيف يكون هؤلاء الأقارب للمتوسط ​​المتحرك أفضل من المرشح المتوسط ​​المتحرك نفسه ثلاث طرق: أولا، والأهم من ذلك، فإن هذه المرشحات لديها توهين توقف أفضل من مرشاح المتوسط ​​المتحرك. ثانيا، حبات مرشح تفتق إلى السعة أصغر قرب نهايات. أذكر أن كل نقطة في إشارة الإخراج هي مجموع مرجح لمجموعة من العينات من المدخلات. إذا كان التناقص التدريجي نواة مرشح، وتعطى عينات في إشارة الدخل التي هي أبعد من وزن أقل من تلك التي قرب. وثالثا، تكون استجابات الخطوة منحنيات ناعمة، بدلا من الخط المستقيم المفاجئ للمتوسط ​​المتحرك. وعادة ما تكون هاتان الفئتان الأخيرتان ذات فائدة محدودة، على الرغم من أنك قد تجد تطبيقات حيثما تكون مزايا حقيقية. المرشح المتوسط ​​المتحرك وأقاربه كل شيء تقريبا في الحد من الضوضاء العشوائية مع الحفاظ على استجابة خطوة حادة. ويكمن الغموض في كيفية قياس زمن الاستجابة للخطوة. إذا تم قياس ريسيتيمي من 0 إلى 100 من الخطوة، فإن المرشح المتوسط ​​المتحرك هو أفضل ما يمكنك القيام به، كما هو موضح سابقا. في المقارنة، وقياس ريسيتيمي من 10 إلى 90 يجعل نافذة بلاكمان أفضل من المرشح المتوسط ​​المتحرك. النقطة هي، وهذا هو مجرد النظرية التشكيك النظر هذه المرشحات متساوية في هذه المعلمة. أكبر الفرق في هذه المرشحات هو سرعة التنفيذ. باستخدام خوارزمية عودية (الموصوفة بعد ذلك)، سيتم تشغيل عامل تصفية المتوسط ​​المتحرك مثل البرق في جهاز الكمبيوتر الخاص بك. في الواقع، هو أسرع مرشح الرقمية المتاحة. وتكون العبور المتعددة للمتوسط ​​المتحرك أبطأ، ولكنها لا تزال سريعة جدا. وبالمقارنة، فإن مرشحات غوسيان وبلاكمان بطيئة للغاية، لأنها يجب أن تستخدم الالتفاف. فكر بعامل قدره عشرة أضعاف عدد النقاط في نواة الفلتر (استنادا إلى الضرب بنحو 10 مرات أبطأ من الإضافة). على سبيل المثال، نتوقع أن يكون غوس 100 نقطة أبطأ بمعدل 1000 مرة من المتوسط ​​المتحرك باستخدام العودية. التمهيد يزيل الاختلافات على المدى القصير، أو كوتنويسكوت للكشف عن النموذج الأساسي غير المحوري الأساسي للبيانات. إيغوراسوتس عملية السلس ينفذ مربع، كوتينوميالكوت، و سافيتسكي-غولاي تمهيد. خوارزميات تمهيد مختلفة تقوي بيانات المدخلات مع معاملات مختلفة. التمويه هو نوع من مرشح تمريرة منخفضة. نوع التمهيد وكمية التمهيد يغير استجابة التردد فيلتروتوتس: المتوسط ​​المتحرك (ويعرف أيضا باسم مربع التجانس) أبسط شكل من أشكال التمهيد هو المتوسطات كوتموفينغ الذي ببساطة يحل محل كل قيمة البيانات مع متوسط ​​القيم المجاورة. لتجنب تحويل البيانات، فمن الأفضل أن متوسط ​​عدد نفس القيم قبل وبعد حيث يتم حساب المتوسط. في شكل المعادلة، يتم حساب المتوسط ​​المتحرك بواسطة: مصطلح آخر لهذا النوع من التمهيد هو كوتسليدينغ أفيراجيكوت، كوتبوكس سموثينغكوت، أو كوتوككار سموثينغكوت. ويمكن تنفيذه عن طريق حشد بيانات المدخلات بنبضة على شكل مربع من قيم 2M1 تساوي كل 1 (2M1). نطلق على هذه القيم كوتكوفيسيانتسكووت من كيرنيلكوتس كوتسموثينغ: الحدين تجانس الحدين تجانس هو مرشح غاوس. فإنه يقوي البيانات الخاصة بك مع معاملات تطبيع المستمدة من مثلث باسكالاكوتس على مستوى يساوي معلمة التمهيد. وتستمد الخوارزمية من مقالة كتبها مارشاند ومارميت (1983). سافيتسكي-غولاي تجانس سافيتسكي-غولاي تمهيد يستخدم مجموعة مختلفة من المعاملات قبل المحوسبة شعبية في مجال الكيمياء. بل هو نوع من المربعات أقل الحدود تجانس. يتم التحكم في كمية التجانس بواسطة معلمتين: الترتيب متعدد الحدود وعدد النقاط المستخدمة لحساب كل قيمة ناتجة. المراجع مارشاند، P. و L. مارميت، الحدين تصفية تجانس: وهناك طريقة لتجنب بعض المزالق من أقل تمهيد متعدد الحدود مربع، القس سسي. Instrum. . 54 - 1034-41، 1983. سافيتسكي، A. أند M. J.E. غولاي، تمويه وتمايز البيانات من خلال تبسيط الإجراءات المربعات الصغرى، الكيمياء التحليلية. 36- 1627-1639، 1964.Documentation يوضح هذا المثال كيفية استخدام مرشحات المتوسط ​​المتحرك وإعادة عزل لعزل تأثير المكونات الدورية من الوقت من اليوم على قراءات درجة الحرارة كل ساعة، وكذلك إزالة الضوضاء خط غير المرغوب فيها من قياس الجهد حلقة مفتوحة. ويبين المثال أيضا كيفية تسهيل مستويات إشارة الساعة مع الحفاظ على الحواف باستخدام مرشح متوسط. يوضح المثال أيضا كيفية استخدام فلتر هامبيل لإزالة القيم المتطرفة الكبيرة. الدافع التمويه هو كيف نكتشف الأنماط الهامة في بياناتنا في حين ترك الأشياء التي هي غير مهمة (أي الضوضاء). نحن نستخدم تصفية لتنفيذ هذا التمهيد. هدف التمهيد هو إحداث تغييرات بطيئة في القيمة بحيث أسهل لرؤية الاتجاهات في بياناتنا. في بعض الأحيان عند فحص بيانات الإدخال قد ترغب في تسهيل البيانات من أجل رؤية اتجاه في الإشارة. في مثالنا لدينا مجموعة من قراءات درجة الحرارة في مئوية أخذت كل ساعة في مطار لوغان لكامل شهر يناير 2011. لاحظ أننا يمكن أن نرى بصريا تأثير أن الوقت من اليوم لديه على قراءات درجة الحرارة. إذا كنت مهتما فقط في التغير في درجة الحرارة اليومية على مدار الشهر، وتقلبات ساعة تسهم فقط الضوضاء، والتي يمكن أن تجعل من الصعب التعرف على الاختلافات اليومية. ولإزالة تأثير الوقت من اليوم، نود الآن تسهيل بياناتنا باستخدام فلتر متوسط ​​متحرك. مرشاح متوسط ​​متحرك في أبسط أشكاله، فإن مرشاح المتوسط ​​المتحرك للطول N يأخذ متوسط ​​كل N عينة متعاقبة من شكل الموجة. ولتطبيق مرشح متوسط ​​متحرك على كل نقطة بيانات، نقوم ببناء معاملاتنا في عامل التصفية بحيث تكون كل نقطة مرجحة على قدم المساواة وتساهم ب 124 في المتوسط ​​الكلي. هذا يعطينا متوسط ​​درجة الحرارة على مدى كل 24 ساعة. فيلتر ديلاي لاحظ أن الإخراج المصفى يتأخر بنحو اثني عشر ساعة. ويرجع ذلك إلى حقيقة أن عامل تصفية المتوسط ​​المتحرك له تأخير. أي مرشح متماثل طول N سوف يكون لها تأخير من (N-1) 2 عينات. يمكننا حساب هذا التأخير يدويا. استخراج الفروق المتوسطة بدلا من ذلك، يمكننا أيضا استخدام فلتر المتوسط ​​المتحرك للحصول على تقدير أفضل لكيفية تأثير الوقت من اليوم على درجة الحرارة الكلية. للقيام بذلك، أولا، طرح البيانات ممهدة من قياسات درجة الحرارة ساعة. بعد ذلك، صنف البيانات المختلفة إلى أيام واحصل على المتوسط ​​خلال كل 31 يوما في الشهر. استخراج الذروة المغلف في بعض الأحيان نود أيضا أن يكون لها تقدير متفاوت بسلاسة لكيفية ارتفاعات وانخفاض مستويات الحرارة لدينا إشارة تغيير يوميا. للقيام بذلك يمكننا استخدام وظيفة المغلف لربط أعلى مستوياته القصوى والهبوط المكتشفة على مجموعة فرعية من فترة 24 ساعة. في هذا المثال، علينا أن نضمن أن هناك ما لا يقل عن 16 ساعة بين كل ارتفاع الشديد والمتطرف الشديد. ويمكننا أيضا أن نحصل على فكرة عن الكيفية التي تتجه بها الرتفاعات والهبوط من خلال أخذ المتوسط ​​بين النقيضين. عوامل التصفية المتوسطة المتحركة المرجحة أنواع أخرى من المرشحات المتوسطة المتحركة لا تزن كل عينة بالتساوي. مرشح مشترك آخر يتبع توسع الحدين من (12،12) n هذا النوع من المرشح يقترب من منحنى العادي للقيم الكبيرة من n. ومن المفيد لتصفية الضوضاء عالية التردد ل n الصغيرة. للعثور على معاملات للمرشح ذي الحدين، 1212 12 مع نفسه ومن ثم تكرارا تزامن الإخراج مع 12 12 عدد محدد من المرات. في هذا المثال، استخدم خمس تكرارات إجمالية. مرشح آخر يشبه إلى حد ما مرشح توسع غاوس هو مرشح المتوسط ​​المتحرك الأسي. هذا النوع من المرشح المتوسط ​​المتحرك المرجح يسهل بناؤه ولا يتطلب حجم نافذة كبير. يمكنك ضبط عامل تصفية متوسط ​​متحرك أضعافا مضاعفة بواسطة معلمة ألفا بين الصفر وواحد. وهناك قيمة أعلى من ألفا يكون أقل تمهيد. التكبير في القراءات ليوم واحد. اختر بلدك

Comments